המספר e ונגזרת הפונקציה המעריכית | 01:26:59
כיתה יא | שרית ביטון
כיתה יא, 5 יחידות | שנת צילום: 2013 | שרית ביטון
המורה פותחת את השיעור במשימה דרכה התלמידים מגלים את הקשר בין המספר e וגבול הסדרה:
בהמשך מוצגת משימה שמובילה את התלמידים לשער שהנגזרת של הפונקציה המעריכית גם היא פונקציה מעריכית. השערתם זו נבדקת באמצעות הגיאוגברה.
החלק הבא של השיעור מתמקד בהצגת הוכחה של נגזרת הפונקציה המעריכית בהסתמך על ידע של חוקי לוגריתמים.
התלמידים מתקשים לעקוב אחר המעברים במהלך ההוכחה.
בחלק האחרון של השיעור מתקיים תרגול גזירה של פונקציות מעריכיות.
היכרות עם המספר דרך משימה (ריבית דריבית).
חוקרים את תכונות גרף הפונקציה: דרך משימה, ואת תכונות נגזרתה (ללא גזירה וללא גרף).
מעבר לחקר – האם נגזרת הפונקציה המעריכית זהה לפונקציה? האם קיים מקרה פרטי שבו זה מתקיים? גילוי ש-
תרגול קצר לגזירת הפונקציה המעריכית על בסיס e.
הוכחה לנגזרת פונקציית
תרגול גזירה של פונקציות מעריכיות מתוך ספר הלימוד.
מומלץ לפתור את הבעיות שהוצגו בשיעור ולהקדים מחשבה על אתגרים שיעלו בידי התלמידים בבואם לפתור בעיות אלה.
אילו רעיונות מתמטיים יעלו לדעתך בשיעור זה?
על אילו רעיונות מתמטיים נשענת הוכחה לנגזרת הפונקציה המעריכית? (יותר מהוכחה אחת)
רעיונות מטה מתמטיים:
מה היו מטרות המורה, לדעתך, כאשר ביקשה מהתלמידים להשוות בין תכונות גרף הפונקציה ובין נגזרתה, בידיעה שהם לא יודעים לגזור?
מה הסיבה, לדעתך, בחרה המורה לתת את המשימה השנייה (פונקציה ונגזרתה)?
המורה מפעילה תהליך חקר בכיתה.
אילו סוגי אינטראקציות עולים מחלק זה של התהליך?
מה מרוויחה ממנו המורה?
אילו דילמות עלו אצל המורה במהלך השיעור?
מה הרוויחה מבחירותיה?
אילו אמונות ניתן לייחס למורה?
על אילו אמונות נשענת, לדעתך, בחירת המורה בהצגת הוכחה לנגזרת?
כשהמורה מציגה את ההוכחה לנגזרת היא משקפת את אמונותיה ש-
עליך להיכנס למערכת כדי לשמור רשימות לשיעור זה.
כיתה יא | שרית ביטון
אתר זה מותאם למסכים ברזולוציות 1024px ומעלה.
לחווית גלישה מלאה אנא חזרו לבקר באתר דרך מסך גדול.
תודה, צוות עדשה.
צוות עדש”ה מקדם בברכה את הגולשות והגולשים באתר.
השימוש באתר ובתכנים המוצגים בו באמצעות רשת האינטרנט או באמצעות אמצעי תקשורת אחרים, לרבות טלפונים סלולאריים, מחשבי כף-יד למיניהם וכיו”ב, כפוף לתנאי השימוש המפורטים להלן בתקנון זה. תחילת השימוש באתר ותכניו מותנית בהסכמתכם לאמור בתנאים אלה, אנא קראו אותם בעיון ובקפידה.
הנהלת האתר רשאית לעדכן את תנאי התקנון מעת לעת.
רישום לאתר ומדיניות פרטיות
אתר עדש”ה מיועד לאנשי מקצוע בתחום החינוך והמחקר. עם הרישום המשתמש/ת מצהיר/ה כי הגלישה באתר תתבצע לשימושים מקצועיים בלבד. במסגרת ההרשמה אתם נדרשים למסור מידע אישי. שדות החובה מסומנים בכוכבית, וקבלת ההרשאה מותנית במילוי מדויק ונכון של שדות אלה. השימוש בשירותים הטעונים רישום אינו כרוך בתשלום.
הנהלת אתר עדש”ה רשאית, על פי שיקול דעתה המוחלט, שלא לאפשר מתן הרשאות, כמו גם לבטל הרשאה קיימת של משתמש. כניסה לאתר תיחסם במקרים הבאים:
הנהלת עדש”ה מכבדת את פרטיות המשתמשים באתר. הנתונים שמסרתם בעת ההרשמה יישמרו במאגר המידע של אתר עדש”ה, ולא יועברו לצד שלישי, אלא אם תהיה ההנהלה מחויבת לעשות כן על פי צו משפטי בגין פעולות שבוצעו באתר המפרות הסכם זה.
בעת הרישום לשירות אתם מתבקשים לבחור סיסמא מזהה שתשמש אתכם בכל כניסה לאתר. סיסמא זו היא אישית ואין להעבירה לגורם אחר.
קניין רוחני ושימוש בתכנים
כל זכויות הקניין הרוחני וזכויות היוצרים על התכנים המופיעים באתר זה שייכות למכון ויצמן למדע.
המשתמשים רשאים להשתמש בתכנים באתר בהתאם לכללים המפורטים להלן. אין להשתמש בתכנים באתר עדש”ה באופן אחר, אלא אם התקבלה הסכמתה המפורשת של הנהלת האתר מראש ובכתב.
בתנאים אלה, המונחים “תוכן”, ו”תכנים” כוללים מידע מכל מין וסוג, לרבות כל תוכן מילולי, חזותי, קולי, אור-קולי (audio-visual), או כל שילוב שלהם וכן עיצובם, עיבודם, עריכתם, הפצתם ודרך הצגתם, לרבות (אך לא רק): כל תמונה, צילום, איור, הנפשה (animation), תרשים, דמות, הדמיה, דגימה (sample), סרטון, קובץ קולי וקובץ מוסיקלי; כל תוכנה, קובץ, קוד מחשב, יישום, תסדיר (format), פרוטוקול, מאגר נתונים וממשק וכל תו, סימן, סמל וצלמית (icon).
השימוש באתר הוא למטרות מקצועיות בלבד. אין להעתיק ולהשתמש בתכנים מתוך האתר למטרות מסחריות. אין להפיץ, למכור או להשכיר תוכן מהאתר בכל דרך או אמצעי בין אם אלקטרוניים, מכאניים, אופטיים, אמצעי צילום או הקלטה, או בכל אמצעי ודרך אחרים, בלא קבלת הסכמה בכתב ומראש מצוות עדש”ה. כמו כן, אין להסיר מן החומרים, למחוק או לשבש כל סימן על התכנים. אין להציג תכנים מאתר עדש”ה (ובכלל זה באמצעות כל תוכנה, מכשיר, אביזר או פרוטוקול תקשורת) באופנים המשנים את עיצובם באתר או מסירים מהם את שיוכם לעדש”ה.
אין להפעיל או לאפשר להפעיל כל יישום מחשב או כל אמצעי אחר, לרבות תוכנות מסוג Crawlers, Robots וכדומה, לשם חיפוש, סריקה, העתקה או אחזור אוטומטי של תכנים מתוך האתר, ואין להשתמש באמצעים כאמור לשם יצירת לקט, אוסף או מאגר שיכילו תכנים של אתר עדש”ה מחוץ לאתר זה.
התכנים המועלים לאתר על ידי משתמש/ת מסוים/ת הם בבעלות המשתמש/ת הנ”ל, אך עובדת פרסומם באתר מהווה אישור מצד המשתמש/ת לאפשר לצוות עדש”ה וליתר המשתמשים לצפות בתכנים אלה.
קישורים (links) לאתרים אחרים:
במקומות מסוימים מוצגים באתר קישורים לאתרי אינטרנט ו/או מקורות אחרים כלשהם. להנהלת עדש”ה אין שליטה על זמינותם של אתרים ומקורות אלה ברשת האינטרנט, והיא אינה מתחייבת כי הקישורים (‘לינקים’) שיימצאו באתר יהיו תקינים תמיד ויובילו לאתר אינטרנט פעיל.
הנהלת עדש”ה רשאית להסיר מהאתר קישורים שנכללו בו בעבר, או להימנע מהוספת קישורים חדשים, על פי שיקול דעתה המוחלט.
השתתפות בפורומים
הפורום המקוון של אתר עדש”ה משמש במה פומבית להבעת דעה בנושאים הרלוונטיים, וצוות עדש”ה מעודד השתתפות פעילה וחופשית של כל המשתמשים בבמה זו. יחד עם זאת, כדי לאפשר את קיומו של שיח פורה, תרבותי וענייני ולמנוע ניצול לרעה של כלי זה, הנהלת האתר תבדוק את התכנים המתפרסמים על ידי משתמשים במטרה למנוע פרסום דברי-נאצה, איומים, ביטויים של גסות רוח וכן תכנים שהם בלתי חוקיים או נוגדים את האינטרסים של עדש”ה. אנא הימנעו מלפרסם באתר כל תוכן שהוא (לרבות טקסט, קישור או הודעה) מבין הבאים:
כל תוכן הידוע לך שהוא שקרי, מטעה או מסולף.
כל תוכן הפוגע בזכויות קנייניות של אחרים או מפר אותן, לרבות זכויות יוצרים וסימני מסחר.
כל תוכן הנוגע לקטינים ומזהה אותם, את פרטיהם האישיים או את מענם ודרכי ההתקשרות עימם.
כל תוכנת מחשב, קוד מחשב או יישומים עוינים/מזיקים (“וירוסים”).
כל תוכן המהווה לשון הרע על אדם, או הפוגע בפרטיותו, או בשמו הטוב.
כל תוכן המזהה אישית אנשים אחרים, מבלי שנתנו את הסכמתם לפרסום זהותם.
כל תוכן בעל אופי טורדני, מעליב, עוין, מאיים או גס רוח.
כל תוכן הכולל ביטויים המזוהים עם גזענות, או אפליה פסולה על בסיס גזע, מוצא, צבע עור, עדה, לאומיות, דת, מין, עיסוק, נטייה מינית, מחלה, נכות גופנית או נפשית, אמונה, השקפה פוליטית, או מעמד חברתי-כלכלי.
כל תוכן המעודד ביצוע עבירה פלילית או עלול להוות בסיס לתביעה או אחריות אזרחית.
הנהלת האתר רשאית למחוק בכל עת שתמצא לנכון תכנים אשר לדעתה מפרים אחד או יותר מן התנאים הנ”ל ו/או עלולים לפגוע באתר ו/או בצד שלישי כלשהו. כמו כן, תהיה ההנהלה רשאית במקרה זה למנוע מן המפרסם/ת העלאת תכנים נוספים בהמשך.
על המפרסם/ת חלה האחריות לדאוג לאמינותם של הפרטים המתפרסמים בשמו/ה. כמו כן, הנהלת עדש”ה ממליצה לנקוט זהירות לגבי הכללת פרטים אישיים בתגובות ציבוריות.
כללי:
הנהלת האתר ערוכה כמיטב יכולתה לאפשר את השימוש באתר בכל עת. עם זאת, אין ביכולת הנהלת האתר להתחייב לזמינות רצופה ללא תקלות. כמו כן, רשאית הנהלת האתר להפסיק את השימוש באתר מעת לעת לצורכי תחזוקתו וארגונו, כמו גם לשנות, מעת לעת, את מבנהו, מראהו וזמינותם של השירותים ו/או המוצרים ו/או התכנים המוצעים או הניתנים בו. שינויים כאלה יבוצעו, בין השאר, בהתחשב באופי הדינאמי של האינטרנט ובשינויים הטכנולוגיים והאחרים המתרחשים ברשת.
על הסכם זה יחולו אך ורק דיני מדינת ישראל.
צפיתי ברוב השיעור. אני חושב שזהו שיעור מאד מוצלח, אבל גם ניתן לשפר אותו במספר דרכים. מלבד מספר אי-דיוקים, אני חושב שיש מה לחדד ולהוסיף בתחום האינטואיציה והמוטיבציה מאחורי הנושאים הללו. אני אשתדל להיות ממוקד ככל הניתן בהערותיי ואשמח לשמוע תגובות.
לגבי הצגת המספר e:
1) (11:30) המורה מציעה את האפשרות לסגור את הכסף לתקופות של חודש אחד עם ריבית של 10%. זה לא מתאים לתבנית (חודש הוא 1 חלקי 12 מהשנה ולא 1 חלקי 10) ולא ברור איך הצעה זו משתלבת בפעילות.
2) (15:45) הקישור לסדרות הנדסיות (גידול ודעיכה) בעייתי. עבור n נתון אנחנו מסתכלים על האיבר ה-n של סידרה הנדסית עם יחס q *שתלוי ב-n*. בשלב שבו רשומים על הלוח המספרים (M(0), M(365), M(100), M(200, … הם למעשה לא שייכים לאותה הסידרה ההנדסית (אין להם את אותו ה-q שרשום על הלוח) וזה יכול להיות מאד מבלבל. בפרט, סדרה הנדסית לא יכולה להתכנס למספר שונה מ-0 ו-1.
3) (16:25) הצגת המספר e כגבול היא כמובן משימה סבוכה בהנתן שלא עוסקים בצורה מפורשת במושג הגבול שהוא בנוסף גם מושג קשה. עם זאת, גם כשלא אומרים את כל האמת חשוב לדייק במה שכן אומרים ולא להגיד דברים כמו “מספר כמעט סופי” או “שואף למספר מאד גדול”. בנוסף, הקשת e במחשבון לא נותנת “את המספר המדוייק” או “את כל הספרות של e”. חשוב להדגיש שהתאור הנ”ל של e נותן דרך מעשית לחשב את e בכל רמת דיוק שנרצה גם ללא מחשבון. בנוסף, רצוי להפריד בין העובדה שיש ל-e אנסוף ספרות אחרי הנקודה ובין העובדה שהוא אי-רציונלי (שזה כמובן דברים שונים).
4) לטעמי לא ניתן הסבר אינטואיטיבי מספק לכך שהסדרה המתקבלת *עולה*. למרות שכל התלמידים הסכימו שזה “אינטואיטיבי”, התעקשות על ניסוח ברור של הסיבה האינטואיטיבית היא חשובה. הסיבה היא שכאשר מבצעים את התהליך בשלבים, אנחנו מרוויחים בכל שלב את *הריבית על הרווח* מהשלב הקודם. חלוקת השלב לתת-שלבים מגדילה את הרווח מאותה הסיבה (זה ש-5 שלבים עדיפים על 4 זה באמת פחות מיידי!) . בנוסף, לא ניתנה אינטואיציה כלל (מלבד עדויות אמפיריות) לכך שהסידרה *חסומה* ולא ממשיכה לעלות עד אינסוף. הרעיון הוא שאם הריבית למשך שנה היא 100%, אז הריבית על הרווח בכל שלב ביניים לא יכולה להיות יותר גדולה מהסכום שסגרנו. כלומר, אנחנו לא יכולים להרוויח יותר מאשר אם נסגור סכום כפול לשנה (נותן את החסם e <=4). כמו כן, זה שהמספר שמקבלים "בגבול" הוא סכום הכסף שהיינו מקבלים אם היינו צוברים "ריבית דריבית" באופן "רציף" לא ננעץ עד הסוף וזה קצת חבל.
לגבי נגזרת הפונקציה המעריכית:
1) חשוב להדגיש שהעובדה שהנגזרת של e^x היא e^x לא הוכחה בשום שלב. חישוב נורמי במחשב ברמת דיוק סופית לא מהווה הוכחה. חשוב לציין גם שניתן לתת הוכחה כזאת (גם אם לא מציגים אחת בשיעור). מלבד הבלבול בין רעיונות מתמטיים מופשטים ופורמליים לבין חישובים אמפיריים של דוגמאות בצורה מקורבת, הצגה זו יכולה לתת לתלמידים את הרושם שיש פה איזה מידע חיצוני שמישהו צריך לספק להם ואין להם שום דרך אפילו בתאוריה להגיע אליו לבד.
2) למרות שחישוב הנגזרת של פונקציה מעריכית באופן פורמלי הוא כנראה קצת מחוץ להישג היד בשלב זה של לימודי המתמטיקה, בהינתן הנגזרת של פונקציה מעריכית ב-0, ניתן בקלות לחשב את הנגזרת בכל נקודה אחרת (אם רושמים את הביטוי, רואים ש-a^x "יוצא החוצה"). אני חושב שזו נקודה שכדאי להראות כי היא פשוטה והיא מסבירה לתלמידים כיצד מסיקים את "הכללים" של "איך גוזרים". כלומר, שזו לא תורה מסיני, אלא מסקנה לוגית הכרחית.
3) אני לא בטוח שהמוטיבציה של מציאת פונקציה שהיא הנגזרת של עצמה משכנעת. אחרי הכל, למה זה חשוב? למה זה משנה שיש פונקציה כזאת? אני מרגיש שזו מוטיבציה מאולצת למדי. מצדשני, שיכולול הסיפור שמציג את e, מראה שגם הפונקציה e^x היא מאד טבעית (כמה כסף יהיה לנו אם נסגור את הכסף ל-x זמן עם ריבית דריבית?).
ליאור יאנובסקי
במקרים רבים בשיעור מורה מבצעת בחירה מכוונת לאי-דיוק מתמטי. מבחירתה זו יכולים לעלות רווחים והפסדים.
פעמים רבות אין אנו יכולים לדעת את הסיבות לבחירה. הסיבות יכולות לנבוע מנסיבות הנוגעות למאפייני התלמידים בכיתה, לאופי הקשר שיש בין המורה לתלמידים וגם למטרות שהציבה לעצמה המורה בשיעור. חשיבות השיח סביב הבחירות של המורה, בהן הבחירה באי-דיוק מתמטי, היא גדולה. שיח המלווה בריבוי דעות משקף לנו הפסדים ורווחים שעשויים לעלות לנו כמורים מבחירות שאנו עושים בשיעור בכיתה ובעיקר חשוב שנהיה מודעים לבחירות אלה.
יש
כדי להשתתף בדיון.